中间件篇-ElasticSearch7.x教程

一、 ElasticSerach 认识

1.1 索引 index

  • 一个索引可以理解成一个关系数据库的库

1.2 类型 type

  • 一种type就像一类表,比如user表,order表

1.3 映射 mapping

  • mapping定义了每个字段的类型等信息。相当于关系型数据库中的表结

1.4 文档 document

  • 一个document相当于关系型数据库中的一⾏行行记录

1.5 字段 field

  • 相当于关系型数据库表的字段

1.6 集群 cluster

-集群由一个或多个节点组成,一个集群有一个默认名称”elasticsearch”

1.7 节点 node

  • 集群的节点,一台机器 或者一个进程

1.8 分片和副本 node

  • 副本是分片的副本。分⽚有主分片(primary Shard)和副本分片(replica Shard)之分。Index数据在物理理上被分布在多个主分片中,每个主分片只存放部分数据。每个主分⽚可以有多个副本,叫副本分片,是主分片的复制。

1.9 核心数据类型

1.9.1 字符串:
  • text
  1. 用于全文索引,该类型的字段将通过分词器 进⾏分词
  • keyword
  1. 不分词,只能搜索该字段的完整的值
1.9.2 数值型
  1. long, integer, short, byte, double, float, half_float, scaled_float
1.9.3 数值型 boolean
  • boolean
1.9.3 二进制
  • binary
  1. 该类型的字段把值当做经过 base64 编码的字符串,默认不存储,且不可搜索
1.9.4 范围类型
  1. 范围类型表示值是一个范围,而不是⼀个具体的值
  2. integer_range, float_range, long_range, double_range, date_range
  3. 譬如 age 的类型是 integer_range,那么值可以是 {“gte” : 20, “lte” : 40};搜索 “term” : {“age”: 21} 可以搜索该值
1.9.5 日期
  • date
  1. 由于Json没有date类型,所以es通过识别字符串是否符合format定义的格式来判断是否为date类型
  2. format默认为:strict_date_optional_time||epoch_millis
  3. “2022-01-01” “2022/01/01 12:10:30” 这种字符串格式

二、索引基本操作

基于Kibana进行操作

2.1 创建索引 PUT请求

  • 请求
1
PUT /person
  • 响应
1
2
3
4
5
{
"acknowledged": true,
"shards_acknowledged": true,
"index": "person"
}

2.2 查看索引 GET请求

  • 请求
1
PUT /person
  • 响应

点击展开

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
{
"person" : {//索引
"aliases" : { },//别名
"mappings" : { },//表结构
"settings" : {//设置
"index" : {//不知道什么鬼
"routing" : {
"allocation" : {
"include" : {
"_tier_preference" : "data_content"
}
}
},
"number_of_shards" : "1",//分片
"provided_name" : "person",//名字
"creation_date" : "1618297457022",//创建时间
"number_of_replicas" : "1",//副本
"uuid" : "tAkSyPwhT1y-YIXd8aPnrQ",//唯一id
"version" : {//版本
"created" : "7120099"
}
}
}
}
}

2.4 删除索引 DELETE请求

  • 请求
1
DELETE /person
  • 响应
1
2
3
{
"acknowledged": true
}

2.5 批量获取索引 GET请求

  • 请求
1
GET /person,animal
  • 响应
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
{
"animal" : {
"aliases" : { },
"mappings" : { },
"settings" : {
"index" : {
"routing" : {
"allocation" : {
"include" : {
"_tier_preference" : "data_content"
}
}
},
"number_of_shards" : "1",
"provided_name" : "animal",
"creation_date" : "1618297759538",
"number_of_replicas" : "1",
"uuid" : "xvlEQJznT_GszJp21OJl4g",
"version" : {
"created" : "7120099"
}
}
}
},
"person" : {
"aliases" : { },
"mappings" : { },
"settings" : {
"index" : {
"routing" : {
"allocation" : {
"include" : {
"_tier_preference" : "data_content"
}
}
},
"number_of_shards" : "1",
"provided_name" : "person",
"creation_date" : "1618297742637",
"number_of_replicas" : "1",
"uuid" : "oZslJJlaRaiOwVktJZEwYw",
"version" : {
"created" : "7120099"
}
}
}
}
}

2.6 获取全部索引 GET请求

  • 请求
1
GET _all

2.7 使用_cat获取全部索引 GET请求

  • 请求
1
GET /_cat/indices?v
  • 响应
1
2
yellow open   person                          oZslJJlaRaiOwVktJZEwYw   1   1          0            0       208b           208b
yellow open animal xvlEQJznT_GszJp21OJl4g 1 1 0 0 208b 208b

2.8 判断索引是否存在 HEAD请求

  • 请求
1
HEAD /person
  • 响应
1
200 - OK

2.9 关闭索引 不删除 POST请求

  • 请求
1
POST /person/_close
  • 响应
1
2
3
4
{
"acknowledged": true,
"shards_acknowledged": true
}

2.10 打开索引 POST请求

  • 请求
1
POST /person/_open
  • 响应
1
2
3
4
{
"acknowledged": true,
"shards_acknowledged": true
}

三、映射的介绍与使用

  • type: text 可分词(划重点)
  • type: keyword 不可分词

3.1 创建Mapping PUT请求

  • 请求
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
PUT /person/_mapping
{
"properties":{
"name":{
"type":"text"
},
"sex":{
"type":"keyword"
},
"idcard":{
"type":"keyword"
},
"birthday":{
"type":"keyword"
},
"desc":{
"type":"text"
}
}
}
  • 响应
1
2
3
{
"acknowledged": true
}

3.2 查看Mapping信息 GET请求

  • 请求
1
GET /person/_mapping
  • 响应
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
{
"person" : {
"mappings" : {
"properties" : {
"birthday" : {
"type" : "keyword"
},
"desc" : {
"type" : "text"
},
"idcard" : {
"type" : "keyword"
},
"name" : {
"type" : "text"
},
"sex" : {
"type" : "keyword"
}
}
}
}
}

3.3 批量获取Mapping信息 GET请求

  • 请求
1
GET /person,animal/_mapping
  • 响应
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
{
"person" : {
"mappings" : {
"properties" : {
"birthday" : {
"type" : "keyword"
},
"desc" : {
"type" : "text"
},
"idcard" : {
"type" : "keyword"
},
"name" : {
"type" : "text"
},
"sex" : {
"type" : "keyword"
}
}
}
},
"animal" : {
"mappings" : { }
}
}

3.4 获取所有Mapping信息第一种方式 GET请求

  • 请求
1
GET /_mapping
  • 响应
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
{
"animal" : {
"mappings" : { }
},
"person" : {
"mappings" : {
"properties" : {
"birthday" : {
"type" : "keyword"
},
"desc" : {
"type" : "text"
},
"idcard" : {
"type" : "keyword"
},
"name" : {
"type" : "text"
},
"sex" : {
"type" : "keyword"
}
}
}
}
}

3.5 获取所有Mapping信息第二种方式 GET请求

  • 请求
1
GET /_all/_mapping

3.6 增加Mapping字段 POST请求

  • Mapping 只可增加字段不可修改字段
  • 请求
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
POST /person/_mapping
{
"properties":{
"name":{
"type":"text"
},
"sex":{
"type":"keyword"
},
"idcard":{
"type":"keyword"
},
"birthday":{
"type":"keyword"
},
"desc":{
"type":"text"
},
"hobby":{
"type":"text"
}
}
}
  • 响应
1
2
3
{
"acknowledged": true
}

四、文档的增删改查

4.1 新增文档 指定ID PUT/POST请求

  • 请求
1
2
3
4
5
6
7
8
9
PUT /person/_doc/1
{
"name":"麦奇",
"sex":"男",
"idcard":"123456789",
"birthday":"1999/02/20",
"desc":"麦奇",
"hobby":"Downhill,table tennis,program design"
}
  • 响应
1
2
3
4
5
6
7
8
9
10
11
12
13
14
{
"_index" : "person",
"_type" : "_doc",
"_id" : "1",
"_version" : 1,
"result" : "created",
"_shards" : {
"total" : 2,
"successful" : 1,
"failed" : 0
},
"_seq_no" : 0,
"_primary_term" : 3
}

4.2 新增文档 自动生成ID POST请求

  • 注意: 不指定IP只能使用POST请求
  • 注意: 自动生成ID开关要打开,关闭状态无法自动创建ID
  • 请求
1
2
3
4
5
6
7
8
9
POST /person/_doc
{
"name":"里奥",
"sex":"男",
"idcard":"343232323",
"birthday":"1998/02/20",
"desc":"一个充满智慧的乌龟",
"hobby":"program design,双节棍,高科技产品"
}
  • 响应
1
2
3
4
5
6
7
8
9
10
11
12
13
14
{
"_index" : "person",
"_type" : "_doc",
"_id" : "khRPyngBRjMpykU9O0ps",// 自动生成ID
"_version" : 1,
"result" : "created",
"_shards" : {
"total" : 2,
"successful" : 1,
"failed" : 0
},
"_seq_no" : 1,
"_primary_term" : 3
}

4.3 自动创建索引 POST请求

  • 查看auto_create_index开关状态,请求http://localhost:9200/_cluster/settings
  • 注意:当索引不存在并且auto_create_index为true的时候,新增文档时会⾃动创建索引,若为false是不能自动创建索引
  • 请求
1
2
3
4
5
6
7
8
9
POST /china_person/_doc/1
{
"name":"杨虎三",
"sex":"男",
"idcard":"765432345",
"birthday":"1998/02/20",
"desc":"一个中国人",
"hobby":"吃、喝、玩、乐"
}
  • 响应
1
2
3
4
5
6
7
8
9
10
11
12
13
14
{
"_index" : "china_person",// 自动创建的索引
"_type" : "_doc",
"_id" : "1",
"_version" : 1,
"result" : "created",
"_shards" : {
"total" : 2,
"successful" : 1,
"failed" : 0
},
"_seq_no" : 0,
"_primary_term" : 1
}

4.4 查看自动创建的索引 GET请求

  • 请求
1
localhost:9200/wperson
  • 响应
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
{
"china_person" : {
"aliases" : { },
"mappings" : {
"properties" : {
"birthday" : {
"type" : "date",
"format" : "yyyy/MM/dd HH:mm:ss||yyyy/MM/dd||epoch_millis"
},
"desc" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
},
"hobby" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
},
"idcard" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
},
"name" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
},
"sex" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
}
}
},
"settings" : {
"index" : {
"routing" : {
"allocation" : {
"include" : {
"_tier_preference" : "data_content"
}
}
},
"number_of_shards" : "1",
"provided_name" : "china_person",
"creation_date" : "1618541251930",
"number_of_replicas" : "1",
"uuid" : "eRdkAL-FQMyPqfef4W9ZbA",
"version" : {
"created" : "7120099"
}
}
}
}
}

4.5 指定操作类型

  • 新增或修改的时候可能会把原有文档修改掉,这里可以指定类型
  • 比如文档存在,我要新增一条文档,但是没有指定类型可能修改掉原有的文档
  • 请求
1
localhost:9200/person/_doc/1?op_type=create
  • 请求体
1
2
3
4
5
6
7
8
9
POST /person/_doc/2?op_type=create
{
"name":"杨虎三",
"sex":"男",
"idcard":"765432345",
"birthday":"1998/02/20",
"desc":"一个中国人",
"hobby":"吃、喝、玩、乐"
}
  • 响应
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
{
"error" : {
"root_cause" : [
{
"type" : "version_conflict_engine_exception",
"reason" : "[2]: version conflict, document already exists (current version [1])",// 文档已经存在
"index_uuid" : "oZslJJlaRaiOwVktJZEwYw",
"shard" : "0",
"index" : "person"
}
],
"type" : "version_conflict_engine_exception",
"reason" : "[2]: version conflict, document already exists (current version [1])",
"index_uuid" : "oZslJJlaRaiOwVktJZEwYw",
"shard" : "0",
"index" : "person"
},
"status" : 409
}

4.6 查看指定ID文档 GET请求

  • 请求
1
GET /person/_doc/1
  • 响应
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
{
"_index" : "person",
"_type" : "_doc",
"_id" : "1",
"_version" : 1,
"_seq_no" : 0,
"_primary_term" : 3,
"found" : true,
"_source" : {
"name" : "麦奇",
"sex" : "男",
"idcard" : "123456789",
"birthday" : "1999/02/20",
"desc" : "麦奇",
"hobby" : "Downhill,table tennis,program design"
}
}

4.7 查看多条文档 第一种方式 GET/POST请求

  • 请求
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
GET /_mget
{
"docs" : [//  指定标签
{
"_index" : "person", // 指定索引
"_type" : "_doc", // 默认类型
"_id" : "1" // 对应id
},
{
"_index" : "person",
"_type" : "_doc",
"_id" : "2"
}
]
}
  • 响应
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
{
"docs" : [
{
"_index" : "person",
"_type" : "_doc",
"_id" : "1",
"_version" : 1,
"_seq_no" : 0,
"_primary_term" : 3,
"found" : true,
"_source" : {
"name" : "麦奇",
"sex" : "男",
"idcard" : "123456789",
"birthday" : "1999/02/20",
"desc" : "麦奇",
"hobby" : "Downhill,table tennis,program design"
}
},
{
"_index" : "person",
"_type" : "_doc",
"_id" : "2",
"_version" : 1,
"_seq_no" : 2,
"_primary_term" : 4,
"found" : true,
"_source" : {
"name" : "杨虎三",
"sex" : "男",
"idcard" : "765432345",
"birthday" : "1998/02/20",
"desc" : "一个中国人",
"hobby" : "吃、喝、玩、乐"
}
}
]
}

4.8 查看多条文档 第二种方式 GET/POST请求

  • 请求
1
2
3
4
5
6
7
8
9
10
GET /person/_mget //指定索引
{
"docs":[{
"_type": "_doc",
"_id": "1"
},{
"_type": "_doc",
"_id": "2"
}]
}
  • 响应
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
{
"docs" : [
{
"_index" : "person",
"_type" : "_doc",
"_id" : "1",
"_version" : 1,
"_seq_no" : 0,
"_primary_term" : 3,
"found" : true,
"_source" : {
"name" : "麦奇",
"sex" : "男",
"idcard" : "123456789",
"birthday" : "1999/02/20",
"desc" : "麦奇",
"hobby" : "Downhill,table tennis,program design"
}
},
{
"_index" : "person",
"_type" : "_doc",
"_id" : "2",
"_version" : 1,
"_seq_no" : 2,
"_primary_term" : 4,
"found" : true,
"_source" : {
"name" : "杨虎三",
"sex" : "男",
"idcard" : "765432345",
"birthday" : "1998/02/20",
"desc" : "一个中国人",
"hobby" : "吃、喝、玩、乐"
}
}
]
}

4.9 查看多条文档 第三种方式 GET/POST请求

  • 请求
1
2
3
4
5
6
7
8
9
10
11
GET /person/_doc/_mget    //指定索引、类型
{
"docs" : [
{
"_id" : "1"
},
{
"_id" : "2"
}
]
}
  • 响应
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
{
"docs" : [
{
"_index" : "person",
"_type" : "_doc",
"_id" : "1",
"_version" : 1,
"_seq_no" : 0,
"_primary_term" : 3,
"found" : true,
"_source" : {
"name" : "麦奇",
"sex" : "男",
"idcard" : "123456789",
"birthday" : "1999/02/20",
"desc" : "麦奇",
"hobby" : "Downhill,table tennis,program design"
}
},
{
"_index" : "person",
"_type" : "_doc",
"_id" : "2",
"_version" : 1,
"_seq_no" : 2,
"_primary_term" : 4,
"found" : true,
"_source" : {
"name" : "杨虎三",
"sex" : "男",
"idcard" : "765432345",
"birthday" : "1998/02/20",
"desc" : "一个中国人",
"hobby" : "吃、喝、玩、乐"
}
}
]
}

4.10 查看多条文档 第四种方式 GET/POST请求

  • 请求
1
2
3
4
GET /person/_doc/_mget
{
"ids":["1","2"]
}
  • 响应 同上

4.11 修改文档 POST请求

  • 根据提供的文档片段更新数据
  • 请求
1
2
3
4
5
6
7
8
9
10
11
POST /person/_update/2
{
"doc": {// doc标签必须存在
"name":"杨虎三",
"sex":"男",
"idcard":"765432345",
"birthday":"1998/02/20",
"desc":"实习生小白",
"hobby":"coding"
}
}
  • 响应
1
2
3
4
5
6
7
8
9
10
11
12
13
14
{
"_index" : "person",
"_type" : "_doc",
"_id" : "2",
"_version" : 2,
"result" : "updated",
"_shards" : {
"total" : 2,
"successful" : 1,
"failed" : 0
},
"_seq_no" : 3,
"_primary_term" : 4
}

4.12 向_source增加字段 POST请求

  • 请求
1
2
3
4
5
6
POST /person/_update/1
{
// script:标签 ctx:上下文 ._source = _source
// 语义:通过上下文拿到 _source字段,新增age为18
"script": "ctx._source.age = 18"
}
  • 响应
1
2
3
4
5
6
7
8
9
10
11
12
13
14
{
"_index" : "person",
"_type" : "_doc",
"_id" : "1",
"_version" : 2,
"result" : "updated",
"_shards" : {
"total" : 2,
"successful" : 1,
"failed" : 0
},
"_seq_no" : 4,
"_primary_term" : 4
}

4.13 向_source删除字段 POST请求

  • 请求
1
2
3
4
5
POST /person/_update/1
{
// json格式无法出现多个" 所以需要转义符
"script": "ctx._source.remove(\"age\")"
}
  • 响应
1
2
3
4
5
6
7
8
9
10
11
12
13
14
{
"_index" : "person",
"_type" : "_doc",
"_id" : "1",
"_version" : 3,
"result" : "updated",
"_shards" : {
"total" : 2,
"successful" : 1,
"failed" : 0
},
"_seq_no" : 5,
"_primary_term" : 4
}

4.14 更新指定文档的字段 POST请求

  • 请求
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
POST /person/_update/1
{
"script": {
// 先获取ID为1的数据,之后进行age+4
"source": "ctx._source.age += params.age",
// 指定参数
"params": {
"age": 4
}
},
// 若存在则修改,若不存在则新增
"upsert":{
"age": 1
}
}
  • 响应
1
2
3
4
5
6
7
8
9
10
11
12
13
14
{
"_index" : "person",
"_type" : "_doc",
"_id" : "1",
"_version" : 5,
"result" : "updated",
"_shards" : {
"total" : 2,
"successful" : 1,
"failed" : 0
},
"_seq_no" : 7,
"_primary_term" : 4
}
  • 查询更新结果
1
GET /person/_doc/1
  • 响应
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
{
"_index" : "person",
"_type" : "_doc",
"_id" : "1",
"_version" : 6,
"_seq_no" : 8,
"_primary_term" : 4,
"found" : true,
"_source" : {
"name" : "麦奇",
"sex" : "男",
"idcard" : "123456789",
"birthday" : "1999/02/20",
"desc" : "麦奇",
"hobby" : "Downhill,table tennis,program design",
"age" : 22
}
}

4.15 upsert介绍

  • upsert 当指定的⽂文档不不存在时,upsert参数包含的内容将会被插⼊入到索引中,作为⼀一个新⽂文档;如果指定的⽂文档存在,ElasticSearch引擎将会执⾏行行指定的更更新逻辑
  • 请求
1
2
3
4
5
6
7
8
9
10
11
12
POST /person/_update/3
{
"script": {
"source": "ctx._source.allstar += params.allstar",
"params": {
"allstar": 4
}
},
"upsert": {
"allstar": 1
}
}
  • 响应
1
2
3
4
5
6
7
8
9
10
11
12
13
14
{
"_index" : "person",
"_type" : "_doc",
"_id" : "3",
"_version" : 1,
"result" : "created",
"_shards" : {
"total" : 2,
"successful" : 1,
"failed" : 0
},
"_seq_no" : 9,
"_primary_term" : 4
}
  • 查询更新结果upsert结果
1
GET /person/_doc/3
  • 响应
1
2
3
4
5
6
7
8
9
10
11
12
{
"_index" : "person",
"_type" : "_doc",
"_id" : "3",
"_version" : 1,
"_seq_no" : 9,
"_primary_term" : 4,
"found" : true,
"_source" : {
"allstar" : 1
}
}

4.16 删除文档 DELETE请求

  • 请求
1
DELETE /person/_doc/3
  • 响应
1
2
3
4
5
6
7
8
9
10
11
12
13
14
{
"_index" : "person",
"_type" : "_doc",
"_id" : "3",
"_version" : 2,
"result" : "deleted",
"_shards" : {
"total" : 2,
"successful" : 1,
"failed" : 0
},
"_seq_no" : 10,
"_primary_term" : 4
}

五、文档的搜索

  • term(词条)查询和full text(全⽂)查询
  • 词条查询:词条查询不会分析查询条件,只有当词条和查询字符串完全匹配时,才匹配搜索
  • 全⽂查询:ElasticSearch引擎会先分析查询字符串,将其拆分成多个分词,只要已分析的字段中包含词条的任意⼀个,或全部包含,就匹配查询条件,返回该⽂档;如果不包含任意一个分词,表示没有任何文档匹配查询条件

5.1 单条term查询 GET/POST请求

  • term 关键字查询,精确查询
  • 例如SQL的where条件
  • ES会对其插入的数据进行分词,当为text类型的字段时,分词后使用term查询可能查询不出,可采用精确查询。
  • 请求
1
2
3
4
5
6
7
8
9
GET /person/_search
{
//查询idcard为765432345的人
"query": {
"term": {//词条
"idcard": "765432345"//字段名称
}
}
}
  • 响应
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
{
"took" : 1,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 1,
"relation" : "eq"
},
"max_score" : 1.6739764,
"hits" : [
{
"_index" : "person",
"_type" : "_doc",
"_id" : "2",
"_score" : 1.6739764,
"_source" : {
"name" : "杨虎三",
"sex" : "男",
"idcard" : "765432345",
"birthday" : "1998/02/20",
"desc" : "实习生小白",
"hobby" : "coding"
}
}
]
}
}

5.2 多条trem查询 GET/POST请求

  • 请求
1
2
3
4
5
6
7
8
GET /person/_search
{
"query": {
"terms": {
"idcard": ["343232323","765432345"]
}
}
}
  • 响应
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
{
"took" : 1,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 2,
"relation" : "eq"
},
"max_score" : 1.0,
"hits" : [
{
"_index" : "person",
"_type" : "_doc",
"_id" : "khRPyngBRjMpykU9O0ps",
"_score" : 1.0,
"_source" : {
"name" : "里奥",
"sex" : "男",
"idcard" : "343232323",
"birthday" : "1998/02/20",
"desc" : "一个充满智慧的乌龟",
"hobby" : "program design,双节棍,高科技产品"
}
},
{
"_index" : "person",
"_type" : "_doc",
"_id" : "2",
"_score" : 1.0,
"_source" : {
"name" : "杨虎三",
"sex" : "男",
"idcard" : "765432345",
"birthday" : "1998/02/20",
"desc" : "实习生小白",
"hobby" : "coding"
}
}
]
}
}

5.2 match_all查询 GET/POST请求

  • 全文查询
  • 请求
1
2
3
4
5
6
7
8
GET /person/_search
{
"query":{
"match_all":{} // 查询全部文档,默认显示10条记录
},
"from": 0, // 从0开始
"size": 100 // 查询100条
}
  • 响应
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
{
"took" : 0,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 3,
"relation" : "eq"
},
"max_score" : 1.0,
"hits" : [
{
"_index" : "person",
"_type" : "_doc",
"_id" : "khRPyngBRjMpykU9O0ps",
"_score" : 1.0,
"_source" : {
"name" : "里奥",
"sex" : "男",
"idcard" : "343232323",
"birthday" : "1998/02/20",
"desc" : "一个充满智慧的乌龟",
"hobby" : "program design,双节棍,高科技产品"
}
},
{
"_index" : "person",
"_type" : "_doc",
"_id" : "2",
"_score" : 1.0,
"_source" : {
"name" : "杨虎三",
"sex" : "男",
"idcard" : "765432345",
"birthday" : "1998/02/20",
"desc" : "实习生小白",
"hobby" : "coding"
}
},
{
"_index" : "person",
"_type" : "_doc",
"_id" : "1",
"_score" : 1.0,
"_source" : {
"name" : "麦奇",
"sex" : "男",
"idcard" : "123456789",
"birthday" : "1999/02/20",
"desc" : "麦奇",
"hobby" : "Downhill,table tennis,program design",
"age" : 26
}
}
]
}
}

5.3 match查询 GET/POST请求

  • 请求
1
2
3
4
5
6
7
8
9
10
GET /person/_search
{
"query":{
"match":{ // 这里使用match
"name": "麦小奇" //name:字段 会进行分词匹配
}
},
"from": 0,
"size": 100
}
  • 响应
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
{
"took" : 14,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 1,
"relation" : "eq"
},
"max_score" : 0.7703978,
"hits" : [
{
"_index" : "person",
"_type" : "_doc",
"_id" : "1",
"_score" : 0.7703978,
"_source" : {
"name" : "麦奇",
"sex" : "男",
"idcard" : "123456789",
"birthday" : "1999/02/20",
"desc" : "麦奇",
"hobby" : "Downhill,table tennis,program design",
"age" : 26
}
}
]
}
}

5.4 multi_match 多个查询 GET/POST请求

  • 请求
1
2
3
4
5
6
7
8
9
GET /person/_search
{
"query":{
"multi_match":{ // 选定多个字段所以使用multi_match
"query": "麦奇", // 值
"fields": ["name","desc"] // 指定查询的字段
}
}
}
  • 响应
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
{
"took" : 12,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 2,
"relation" : "eq"
},
"max_score" : 1.987459,
"hits" : [
{
"_index" : "person",
"_type" : "_doc",
"_id" : "1",
"_score" : 1.987459,
"_source" : {
"name" : "麦奇",
"sex" : "男",
"idcard" : "123456789",
"birthday" : "1999/02/20",
"desc" : "麦奇",
"hobby" : "Downhill,table tennis,program design",
"age" : 26
}
},
{
"_index" : "person",
"_type" : "_doc",
"_id" : "_create",
"_score" : 1.3365866,
"_source" : {
"name" : "麦兜",
"sex" : "男",
"idcard" : "54343423",
"birthday" : "1993/02/20",
"desc" : "麦奇的好朋友",
"hobby" : "哈哈哈哈哈",
"age" : 26
}
}
]
}
}

5.4 match_phrase 多个查询 GET/POST请求

  • 准确查询 类似词条查询
  • 请求
1
2
3
4
5
6
7
8
GET /person/_search
{
"query":{
"match_phrase":{
"name": "麦奇"
}
}
}
  • 响应
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
{
"took" : 1,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 1,
"relation" : "eq"
},
"max_score" : 1.987459,
"hits" : [
{
"_index" : "person",
"_type" : "_doc",
"_id" : "1",
"_score" : 1.987459,
"_source" : {
"name" : "麦奇",
"sex" : "男",
"idcard" : "123456789",
"birthday" : "1999/02/20",
"desc" : "麦奇",
"hobby" : "Downhill,table tennis,program design",
"age" : 26
}
}
]
}
}

5.5 match_phrase_profix 多个查询 GET/POST请求

  • 可以增加前缀
  • 请求
1
2
3
4
5
6
7
8
GET /person/_search
{
"query":{
"match_phrase_prefix":{
"name": "麦" // 指定了前缀
}
}
}
  • 响应
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
{
"took" : 13,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 2,
"relation" : "eq"
},
"max_score" : 0.72615415,
"hits" : [
{
"_index" : "person",
"_type" : "_doc",
"_id" : "_create",
"_score" : 0.72615415,
"_source" : {
"name" : "麦兜",
"sex" : "男",
"idcard" : "54343423",
"birthday" : "1993/02/20",
"desc" : "麦奇的好朋友",
"hobby" : "哈哈哈哈哈",
"age" : 26
}
},
{
"_index" : "person",
"_type" : "_doc",
"_id" : "1",
"_score" : 0.72615415,
"_source" : {
"name" : "麦奇",
"sex" : "男",
"idcard" : "123456789",
"birthday" : "1999/02/20",
"desc" : "麦奇",
"hobby" : "Downhill,table tennis,program design",
"age" : 26
}
}
]
}
}

六、ElasticSerach 搜索

6.1 批量导入数据

  • Bulkl
  1. ES提供了Bulk的API 来进行批量操作
  • 数据结构类型,以换行区分
1
2
3
4
5
6
// 必须有一个索引叫book
{"index": {"_index": "book", "_type": "_doc", "_id": 1}}
{"name": "Java编程思想"}
{"index": {"_index": "book", "_type": "_doc", "_id": 2}}
{"name": "设计模式"}
// 结尾必须有换行
  • 请求
1
curl -X POST "localhost:9200/_bulk" -H 'Content-Type: application/json' --data-binary @name // name就是文件的路径和名字
  • 测试 查询
1
2
3
4
5
6
7
{
"query":{
"match_all":{}
},
"from": 0,
"size": 100
}

6.2 trem多种查询

  • 单词级别查询
  1. 这些查询通常⽤用于结构化的数据,⽐比如:number, date, keyword等,而不是对text。
  2. 也就是说,全⽂本查询之前要先对⽂本内容进⾏分词,⽽单词级别的查询直接在相应字段的反向索引中精确查找,单词级别的查询⼀般⽤于数值、⽇期等类型的字段上
  3. 去找个网站生成数据导入
1
2
3
4
5
6
7
8
9
10
11
[
'{{repeat(20, 30)}}',
{
name : '{{firstName()}} {{surname()}}',
sex : '{{random("女", "男")}}',
idcard : '{{objectId()}}',
birthday : '{{date(new Date(2014, 0, 1), new Date(), "YYYY-MM-ddThh:mm:ss Z")}}',
desc : '{{lorem(1, "paragraphs")}}',
hobby : '{{lorem(1, "words")}}',
age : '{{integer(20, 40)}}'
}]
6.2.1 term query 精准匹配查询 GET/POST请求
  • 请求
1
2
3
4
5
6
7
8
9
10
GET /person/_search
{
"query": {
"term": {
"idcard": 343232323
}
},
"from": 0,
"size": 20
}
  • 响应
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
{
"took" : 9,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 1,
"relation" : "eq"
},
"max_score" : 1.2039728,
"hits" : [
{
"_index" : "person",
"_type" : "_doc",
"_id" : "khRPyngBRjMpykU9O0ps",
"_score" : 1.2039728,
"_source" : {
"name" : "里奥",
"sex" : "男",
"idcard" : "343232323",
"birthday" : "1998/02/20",
"desc" : "一个充满智慧的乌龟",
"hobby" : "program design,双节棍,高科技产品"
}
}
]
}
}
6.2.2 exsit query 在特定的字段中查找非空值的文档 GET/POST请求
  • 请求
1
2
3
4
5
6
7
8
9
10
GET /person/_search
{
"query": {
"exists": {
"field": "age"//查询存在age的记录
}
},
"from": 0,
"size": 3
}
  • 响应
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
{
"took" : 6,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 2,
"relation" : "eq"
},
"max_score" : 1.0,
"hits" : [
{
"_index" : "person",
"_type" : "_doc",
"_id" : "1",
"_score" : 1.0,
"_source" : {
"name" : "麦奇",
"sex" : "男",
"idcard" : "123456789",
"birthday" : "1999/02/20",
"desc" : "麦奇",
"hobby" : "Downhill,table tennis,program design",
"age" : 26
}
},
{
"_index" : "person",
"_type" : "_doc",
"_id" : "_create",
"_score" : 1.0,
"_source" : {
"name" : "Julie Peters",
"sex" : "男",
"idcard" : "6079270de8b8f59c77eb3cd2",
"birthday" : "2021-01-26T05:17:20 -08:00",
"hobby" : "quis",
"age" : 29
}
}
]
}
}
6.2.3 prefix query 查找包含带有指定前缀term的文档 GET/POST请求
  • 请求
1
GET /person/_search
  • 请求体
1
2
3
4
5
6
7
8
9
10
11
{
// 语义:查找teamNameEn 不为空的数据 teamNameEn必须为text类型
// 使用前缀类型必须为keyword,不能为text
"query": {
"prefix": {
"name": "麦"
}
},
"from": 0,
"size": 3
}
  • 响应
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
{
"took" : 0,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 2,
"relation" : "eq"
},
"max_score" : 1.0,
"hits" : [
{
"_index" : "person",
"_type" : "_doc",
"_id" : "1",
"_score" : 1.0,
"_source" : {
"name" : "麦奇",
"sex" : "男",
"idcard" : "123456789",
"birthday" : "1999/02/20",
"desc" : "麦奇",
"hobby" : "Downhill,table tennis,program design",
"age" : 26
}
},
{
"_index" : "person",
"_type" : "_doc",
"_id" : "_create",
"_score" : 1.0,
"_source" : {
"name" : "麦兜",
"sex" : "男",
"idcard" : "54343423",
"birthday" : "1993/02/20",
"desc" : "麦奇的好朋友",
"hobby" : "哈哈哈哈哈",
"age" : 26
}
}
]
}
}
6.2.4 wildcard query 支持通配符查询 GET/POST请求
  • *表示任意字符,?表示任意单个字符,类似SQL模糊查询
  • 请求
1
2
3
4
5
6
7
8
9
10
11
GET /person/_search
{
// 语义: 查询name为Ro*s *为模糊搜索
"query": {
"wildcard": {
"name": "Ro*s"
}
},
"from": 0,
"size": 3
}
6.2.5 regexp query 正则表达式查询 GET/POST请求
  • 请求
1
2
3
4
5
6
7
8
9
10
11
GET /person/_search
{
// 语义: 查询name 为Ro.*s .表示任意 *为多个
"query": {
"regexp": {
"name": "Ro.*s"
}
},
"from": 0,
"size": 3
}
6.2.6 ids query 通过id批量查询 GET/POST请求
  • 请求
1
2
3
4
5
6
7
8
9
10
GET /person/_search
{
"query": {
"ids": {
"values": [1,2,3]
}
},
"from": 0,
"size": 3
}

6.3 范围查询

6.3.1 第一种范围查询 GET/POST请求
  • 请求
1
2
3
4
5
6
7
8
9
10
11
12
13
14
GET /person/_search
{
// 语义: 查找在person打了2年年到10年以内的球员
"query": {
"range": {
"playYear":{ //playYear 是Long类型 不要写成字符串
"gte": 2,
"lte" : 10
}
}
},
"from": 0,
"size": 3
}

gt: greater than 大于
gte: greater than or equal 大于等于
lt: less than 小于
lte: less than or equal 小于等于

6.3.2 第二种范围查询 GET/POST请求
  • 请求
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
GET /person/_search
{
// 语义: 查找1980年年到1999年年出⽣生的球员
"query": {
"range": {
"birthDay":{
"gte": "01/01/1999",
"lte" : "1999",,
"format": "dd/MM/yyyy||yyyy" // 日期格式要对应get lte
}
}
},
"from": 0,
"size": 3
}

6.4 布尔查询

type description
must 必须出现在匹配文档中
filter 必须出现在文档中,但是不打分
must_not 不能出现在文档中
should 应该出现在文档中
6.4.1 must查询 GET/POST请求
  • 请求
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
GET /person/_search
{
// 语义: 查询名字叫做james的人
"query": {
"bool": { // 布尔查询
"must":[ //匹配查询方式
{
"match": { // 全文搜索
"name": "james"
}
}
]
}
},
"from": 0,
"size": 3
}
6.4.2 filter查询 GET/POST请求
  • 请求
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
GET /person/_search
{
// 语义: 查询名字叫做james的球员 不包含打分
"query": {
"bool": {
"filter":[
{
"match": {
"name": "james"
}
}
]
}
},
"from": 0,
"size": 3
}
6.4.3 must_not查询 GET/POST请求
  • 请求
1
localhost:9200/person/_search
  • 请求体
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
{
// 语义: 查询名字叫做james的人,一定不在东部的
"query": {
"bool": {
"filter":[
{
"match": {
"displayNameEn": "james"
}
}
],
"must_not": [
{
"term": {
"teamConferenceEn": {
"value": "eastern"
}
}
}
]
}
},
"from": 0,
"size": 3
}
6.4.4 should 第一种 查询 GET/POST请求
  • 请求
1
localhost:9200/person/_search
  • 请求体
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
{
// 语义: 查找名字叫做james的打球时间应该在11到20年的西部球员
// should应该 但是不是必须
"query": {
"bool": {
"filter":[
{
"match": {
"displayNameEn": "james"
}
}
],
"must_not": [
{
"term": {
"teamConferenceEn": {
"value": "eastern"
}
}
}
],
"should": [
{
"range": {
"playYear": {
"gte": 11,
"lte": 20
}
}
}
]
}
},
"from": 0,
"size": 3
}
6.4.5 should 第二种 查询 GET/POST请求
  • 请求
1

  • 请求体
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
{
// 语义: 查找名字叫做james的打球时间应该在11到20年的西部球员
// minimum_should_match = 1 最小匹配精度,至少有一个条件满足
"query": {
"bool": {
"filter":[
{
"match": {
"displayNameEn": "james"
}
}
],
"must_not": [
{
"term": {
"teamConferenceEn": {
"value": "eastern"
}
}
}
],
"should": [
{
"range": {
"playYear": {
"gte": 11,
"lte": 20
}
}
}
]
, "minimum_should_match": 1
}
},
"from": 0,
"size": 3
}
  • 响应
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
{
"took" : 0,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 1,
"relation" : "eq"
},
"max_score" : 1.0,
"hits" : [
{
"_index" : "person",
"_type" : "_doc",
"_id" : "267",
"_score" : 1.0,
"_source" : {
"countryEn" : "United States",
"teamName" : "湖人",
"birthDay" : 473230800000,
"country" : "美国",
"teamCityEn" : "Los Angeles",
"code" : "lebron_james",
"displayAffiliation" : "No College/United States",
"displayName" : "勒布朗 詹姆斯",
"schoolType" : "High School",
"teamConference" : "西部",
"teamConferenceEn" : "Western",
"weight" : "113.4 公斤",
"teamCity" : "洛杉矶",
"playYear" : 16,
"jerseyNo" : "23",
"teamNameEn" : "Lakers",
"draft" : 2003,
"displayNameEn" : "LeBron James",
"heightValue" : 2.03,
"birthDayStr" : "1984-12-30",
"position" : "前锋",
"age" : 35,
"playerId" : "2544"
}
}
]
}
}

6.5 排序查询

6.5.1 第一种排序查询 GET/POST请求
  • 请求
1
localhost:9200/person/_search
  • 请求体
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
{
// 语义: ⽕箭队中按打球时间从⼤到⼩排序的球员
"query": {
"match": {
"teamName": "Rockets"
}
},
"sort": [
{
"playYear": {
"order": "desc"
}
}
],
"from": 0,
"size": 3
}
6.5.2 第一种排序查询 GET/POST请求
  • 请求
1
localhost:9200/person/_search
  • 请求体
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
{
// 语义: ⽕箭队中按打球时间从⼤到⼩,如果年龄相同则按照身⾼从⾼到低排序的球员
"query": {
"match": {
"teamNameEn": "Rockets"
}
},
"sort": [
{
"playYear": {
"order": "desc"
}
},
{
"heightValue": {
"order": "asc"
}
}
],
"from": 0,
"size": 3
}

6.6 聚合查询指标聚合

  • ES聚合分析是什么
  1. 聚合分析是数据库中重要的功能特性,完成对⼀个查询的数据集中数据的聚合计算,如:找出某字段(或计算表达式的结果)的最⼤值、最⼩值,计算和、平均值等。ES作为搜索引擎兼数据库,同样提供了强⼤的聚合分析能力。
  2. 对⼀个数据集求最大、最小、和、平均值等指标的聚合,在ES中称为指标聚合
  3. 而关系型数据库中除了有聚合函数外,还可以对查询出的数据行分组group by,再在组上进行指标聚合。在ES中称为桶聚合
6.6.1 max min sum avg 指标聚合查询 GET/POST
  • max min sum avg 指标聚合
  • 请求
1
localhost:9200/person/_search
  • 请求体
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
{
// 语义: 查询火箭队球员平均年龄
"query": {
"term": {
"teamNameEn": "Rockets"
}
},
"aggs": { // aggs 代表使用聚合函数
"avgAge": { // avgAge是自定义的,因为是查年年龄平均所以起名avgAge
"avg": { // avg 平均
"field": "age"
}
}
},
"size": 0 // 不看数据只看指标聚合
}
  • 响应
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
{
"took" : 1,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 21,
"relation" : "eq"
},
"max_score" : null,
"hits" : [ ]
},
"aggregations" : {
"avgAge" : {
"value" : 26.761904761904763 // 平均年龄
}
}
}
6.6.2 value_count 指标聚合查询 GET/POST
  • 统计非空字段的文档数
  • 请求
1
localhost:9200/person/_search
  • 请求体
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
{
// 语义: 查询火箭队中球员打球时间不为空的数量
"query": {
"term": {
"teamNameEn": "Rockets"
}
},
"aggs": {
"countPlayerYear": {
"value_count": {
"field": "playYear"
}
}
},
"size": 0
}
  • 响应
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
{
"took" : 4,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 21,
"relation" : "eq"
},
"max_score" : null,
"hits" : [ ]
},
"aggregations" : {
"countPlayerYear" : {
"value" : 21
}
}
}
6.6.3 _count 指标聚合查询(严格来说不属于聚合) GET/POST
  • 查询火箭队有多少文档,也就是有多少球员
  • 请求
1
localhost:9200/person/_count
  • 请求体
1
2
3
4
5
6
7
{
"query": {
"term": {
"teamNameEn": "Rockets"
}
}
}
  • 响应
1
2
3
4
5
6
7
8
9
{
"count": 21,
"_shards": {
"total": 1,
"successful": 1,
"skipped": 0,
"failed": 0
}
}
6.6.4 cardinality 指标聚合查询 GET/POST
  • Cardinality 值去重计算
  • 请求
1
localhost:9200/person/_search
  • 请求体
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
{
// 语义: 查询火箭队中年龄不同的数量
"query": {
"term": {
"teamNameEn": "Rockets"
}
},
"aggs": {
"countAge": { // 自定义名字
"cardinality": { // 去掉相同的只保留一个值
"field": "age"
}
}
},
"size": 0
}
  • 响应
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
{
"took" : 1,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 21,
"relation" : "eq"
},
"max_score" : null,
"hits" : [ ]
},
"aggregations" : {
"countAge" : {
"value" : 13
}
}
}
6.6.5 status 种指标聚合查询 GET/POST
  • stats 统计count max min avg sum 5个值
  • 请求
1
localhost:9200/person/_search
  • 请求体
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
{
// 语义: 查询火箭球员的年龄status
"query": {
"term": {
"teamNameEn": "Rockets"
}
},
"aggs": {
"status": {
"stats": {
"field": "age"
}
}
},
"size": 0
}
  • 响应
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
{
"took" : 1,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 21,
"relation" : "eq"
},
"max_score" : null,
"hits" : [ ]
},
"aggregations" : {
"status" : {
"count" : 21,
"min" : 21.0,
"max" : 37.0,
"avg" : 26.761904761904763,
"sum" : 562.0
}
}
}
6.6.6 extended status 种指标聚合查询 GET/POST
  • Extended stats ⽐比stats多4个统计结果: 平⽅方和、⽅方差、标准差、平均值加减两个标准差的区间
  • 请求
1
localhost:9200/person/_search
  • 请求体
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
{
// 查出火箭队球员的年龄Extend stats
"query": {
"term": {
"teamNameEn": "Rockets"
}
},
"aggs": {
"extendedStatsAge": {
"extended_stats": {
"field": "age"
}
}
},
"size": 0
}
  • 响应
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
{
"took" : 0,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 21,
"relation" : "eq"
},
"max_score" : null,
"hits" : [ ]
},
"aggregations" : {
"extendedStatsAge" : {
"count" : 21,
"min" : 21.0,
"max" : 37.0,
"avg" : 26.761904761904763,
"sum" : 562.0,
"sum_of_squares" : 15534.0,
"variance" : 23.5147392290249,
"std_deviation" : 4.84919985451465,
"std_deviation_bounds" : {
"upper" : 36.46030447093406,
"lower" : 17.063505052875463
}
}
}
}
6.6.7 percentiles 种指标聚合查询 GET/POST
  • Percentiles 占比百分位对应的值统计,默认返回[ 1, 5, 25, 50, 75, 95, 99 ]分位上的值
  • 请求
1
localhost:9200/person/_search
  • 请求体
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
{
// 语义: 查出火箭的球员的年龄占比
"query": {
"term": {
"teamNameEn": "Rockets"
}
},
"aggs": {
"percentilesAge": {
"percentiles": {
"field": "age",
// 这里可以指定,不使用默认
// "percents": [
// 25,
// 50,
// 75
// ]
}
}
},
"size": 0
}
  • 响应
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
{
"took" : 1,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 21,
"relation" : "eq"
},
"max_score" : null,
"hits" : [ ]
},
"aggregations" : {
"percentilesAge" : {
"values" : {
"1.0" : 21.0,
"5.0" : 21.0,
"25.0" : 22.75, // 小于22.75岁的 占25%
"50.0" : 25.0,
"75.0" : 30.25,// 小于30.25岁的 占75%
"95.0" : 35.349999999999994,
"99.0" : 37.0
}
}
}
}

6.7 聚合查询桶聚合

6.7.1 terms aggregation 桶聚合查询 GET/POST
  • 请求
1
localhost:9200/person/_search
  • 请求体
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
{
// 语义: 火箭队根据年龄进行分组
"query": {
"term": {
"teamNameEn": "Rockets"
}
},
"aggs": {
"aggrAge": {
"terms": { // 因为根据年龄做桶聚合所以使用terms
"field": "age",
"size": 3 // 指定显示桶数
}
}
},
"size": 0
}
  • 响应
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
{
"took" : 1,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 21,
"relation" : "eq"
},
"max_score" : null,
"hits" : [ ]
},
"aggregations" : {
"aggrAge" : {
"doc_count_error_upper_bound" : 0,
"sum_other_doc_count" : 3,
"buckets" : [
{
"key" : 21, // 指定的字段 age
"doc_count" : 4 // 21岁的文档数有4个
},
{
"key" : 25,
"doc_count" : 3
},
{
"key" : 23,
"doc_count" : 2
}
]
}
}
}
6.7.2 order 第一种分组聚合查询 GET/POST
  • 请求体
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
{
// 语义: 根据火箭队年龄进行分组,分组信息通过年龄从大到小排序(通过指定字段)
"query": {
"term": {
"teamNameEn": "Rockets"
}
},
"aggs": {
"aggrAge": {
"terms": {
"field": "age",
"size": 3,
"order": {
"_key": "desc" //"_key关键字 倒序排序
// "_count": "desc" 通过文档排序
}
}
}
},
"size": 0
}
  • 响应
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
{
"took" : 0,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 21,
"relation" : "eq"
},
"max_score" : null,
"hits" : [ ]
},
"aggregations" : {
"aggrAge" : {
"doc_count_error_upper_bound" : 0,
"sum_other_doc_count" : 17,
"buckets" : [
{
"key" : 37,
"doc_count" : 1
},
{
"key" : 34,
"doc_count" : 2
},
{
"key" : 33,
"doc_count" : 1
}
]
}
}
}
6.7.3 order 第二种分组聚合查询 GET/POST
  • 请求
1
localhost:9200/person/_search
  • 请求体
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
{
// 语义: 每支球队按该队所有球员的平均年龄进行分组排序(通过分组指标值)
"aggs": {
"aggsTeamName": {
"terms": { // 因为使用分组所以用terms
"field": "teamNameEn",
"size": 3, // 显示3条
"order": {
"avgAge": "desc"
}
}, // 因为需要通过对球队的平均年龄进行分组排序,所以再写aggs
"aggs": {
"avgAge": {
"avg": {
"field": "age"
}
}
}
}
},
"size": 0
}
  • 响应
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
{
"took" : 3,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 566,
"relation" : "eq"
},
"max_score" : null,
"hits" : [ ]
},
"aggregations" : {
"aggsTeamName" : {
"doc_count_error_upper_bound" : -1,
"sum_other_doc_count" : 511,
"buckets" : [
{
"key" : "Bucks",
"doc_count" : 14,
"avgAge" : {
"value" : 28.142857142857142
}
},
{
"key" : "Mavericks",
"doc_count" : 20,
"avgAge" : {
"value" : 27.85
}
},
{
"key" : "Lakers",
"doc_count" : 21,
"avgAge" : {
"value" : 27.714285714285715
}
}
]
}
}
}
6.7.3 include 筛选分组聚合查询 GET/POST
  • 请求
1
localhost:9200/person/_search
  • 请求体
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
{
// 语义: 湖人和火箭队按球队平均年龄进行分组排序(指定值列表 )
"aggs": {
"aggsTeamName": {
"terms": {
"field": "teamNameEn",
// include指定队伍 ["Lakes","Rockets","warriors"]
"include": ["Lakes","Rockets","warriors"],
// exclude去除["warriors"]
"exclude": ["warriors"],
"size": 3,
"order": {
"avgAge": "desc"
}
},
"aggs": {
"avgAge": {
"avg": {
"field": "age"
}
}
}
}
},
"size": 0
}
  • 响应
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
{
"took" : 0,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 566,
"relation" : "eq"
},
"max_score" : null,
"hits" : [ ]
},
"aggregations" : {
"aggsTeamName" : {
"doc_count_error_upper_bound" : 0,
"sum_other_doc_count" : 0,
"buckets" : [
{
"key" : "Rockets",
"doc_count" : 21,
"avgAge" : {
"value" : 26.761904761904763
}
}
]
}
}
}
6.7.4 include 正则筛选分组聚合查询 GET/POST
  • 请求
1
localhost:9200/person/_search
  • 请求体
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
{
// 语义: 湖人和火箭队按球队平均年龄进行分组排序(指定值列表 )
"aggs": {
"aggsTeamName": {
"terms": {
"field": "teamNameEn",
// 使用正则表达式
"include": "Lakers|Ro.*|Warriors.*",
"exclude": "warriors",
"size": 3,
"order": {
"avgAge": "desc"
}
},
"aggs": {
"avgAge": {
"avg": {
"field": "age"
}
}
}
}
},
"size": 0
}
  • 响应
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
{
"took" : 0,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 566,
"relation" : "eq"
},
"max_score" : null,
"hits" : [ ]
},
"aggregations" : {
"aggsTeamName" : {
"doc_count_error_upper_bound" : 0,
"sum_other_doc_count" : 0,
"buckets" : [
{
"key" : "Lakers",
"doc_count" : 21,
"avgAge" : {
"value" : 27.714285714285715
}
},
{
"key" : "Rockets",
"doc_count" : 21,
"avgAge" : {
"value" : 26.761904761904763
}
},
{
"key" : "Warriors",
"doc_count" : 20,
"avgAge" : {
"value" : 26.25
}
}
]
}
}
}
6.7.4 range aggregation 范围分组聚合查询 GET/POST
  • 请求
1
localhost:9200/person/_search
  • 请求体
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
{
// 语义: 球员年龄按20、20-35、35 这样分组
"aggs": {
"ageRange": {
"range": {
"field": "age",
"ranges": [
{
"to": 20, // 小于等于 20
"key": "A" //别名 A
},
{
"from": 20, // 大于等于20
"to": 35, // 小于等于 35
"key": "B" //别名 B
},
{
"from": 35, // 大于等于35
"key": "C" //别名 C
}
]
}
}
},
"size": 0
}
  • 响应
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
{
"took" : 0,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 566,
"relation" : "eq"
},
"max_score" : null,
"hits" : [ ]
},
"aggregations" : {
"ageRange" : {
"buckets" : [
{
"key" : "A",
"to" : 20.0,
"doc_count" : 15
},
{
"key" : "B",
"from" : 20.0,
"to" : 35.0,
"doc_count" : 531
},
{
"key" : "C",
"from" : 35.0,
"doc_count" : 20
}
]
}
}
}
6.7.5 date rabge aggregation 时间范围分组聚合查询 GET/POST
  • 请求
1
localhost:9200/person/_search
  • 请求体
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
{
// 语义: 球员按出生年月分组
"aggs": {
"birthDayRange": {
"date_range": { // 时间类型
"field": "birthDay", // 生日 生日是时间类型
"format": "MM-yyy", //时间格式 月份年份
"ranges": [
{
"from": "01-1989" // 小于1989年1月出生
},
{
"from": "01-1989", // 1989年1月到1999年1月
"to": "01-1999"
},
{
"from": "01-1999", // 1999年1月到2009年1月
"to": "01-2009"
},
{
"from": "01-2009"
}
]
}
}
},
"size": 0
}
  • 响应
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
{
"took" : 0,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 566,
"relation" : "eq"
},
"max_score" : null,
"hits" : [ ]
},
"aggregations" : {
"birthDayRange" : {
"buckets" : [
{
"key" : "01-1989-01-1999",
"from" : 5.99616E11,
"from_as_string" : "01-1989",
"to" : 9.151488E11,
"to_as_string" : "01-1999",
"doc_count" : 426
},
{
"key" : "01-1989-*",
"from" : 5.99616E11,
"from_as_string" : "01-1989",
"doc_count" : 469
},
{
"key" : "01-1999-01-2009",
"from" : 9.151488E11,
"from_as_string" : "01-1999",
"to" : 1.230768E12,
"to_as_string" : "01-2009",
"doc_count" : 43
},
{
"key" : "01-2009-*",
"from" : 1.230768E12,
"from_as_string" : "01-2009",
"doc_count" : 0
}
]
}
}
}
6.7.6 date histogram aggregation 时间范围分组聚合查询 GET/POST
  • 按天、月、年等进行聚合统计。可按 year (1y), quarter (1q), month (1M), week (1w), day (1d), hour (1h), minute (1m), second (1s) 间隔聚合
  • 请求
1
localhost:9200/person/_search
  • 请求体
1
2
3
4
5
6
7
8
9
10
11
12
13
{
// 语义: 球员按出⽣生年年分组
"aggs": {
"birthday_aggs": {
"date_histogram": {
"field": "birthDay", //生日字段
"format": "yyyy", // 时间格式
"calendar_interval": "year" // 根据年
}
}
},
"size": 0
}

6.8 query_string 查询

  • query_string 查询,如果熟悉lucene的查询语法,我们可以直接⽤用lucene查询语法写⼀一个查询串进行查询,ES中接到请求后,通过查询解析器 ,解析查询串生成对应的查询。
6.8.1 query_string AND OR 单字段查询 GET/POST请求
  • 请求
1
localhost:9200/person/_search
  • 请求体
1
2
3
4
5
6
7
8
9
10
11
{
// 语义: 指定单个字段查询(查询詹姆斯或者库里的球员)
"query": {
"query_string": {
"default_field": "displayNameEn",
"query": "james OR curry" // 这里可以使用or或and也就是sql里的or和and
// "query": "james AND curry"
}
},
"size": 3
}
6.8.2 query_string AND OR 多字段查询 GET/POST请求
  • 请求
1
localhost:9200/person/_search
  • 请求体
1
2
3
4
5
6
7
8
9
10
11
12
13
{
// 语义: 指定多个字段查询(查询詹姆斯或者库里的球员)
"query": {
"query_string": {
"fields": [ // 指定多个字段
"displayNameEn",
"teamNameEn"
],
"query": "james AND Rockets" // 查询条件
}
},
"size": 3
}

七、ElasticSerach 高级搜索

7.1 索引别名的使用

  • 在开发中,随着业务需求的迭代,较老的业务逻辑就要面临更新甚至是重构,而对于es来说,为了了适应新的业务逻辑,可能就要对原有的索引做一些修改,比如对某些字段做调整,甚至是重建索引。而做这些操作的时候,可能会对业务造成影响,甚至是停机调整等问题。由此,es提供了索引别名来解决这些问题。 索引别名就像一个快捷方式或是软连接,可以指向一个或多个索引,也可以给任意一个需要索引名的API来使⽤用。别名的应用为程序提供了极大地灵活性
7.1.1 查询别名 GET请求
  • 请求
1
2
localhost:9200/person/_alias // 查询person别名
localhost:9200/_aliases // 查询所有别名
  • 响应
1
2
3
4
5
6
7
8
9
10
11
12
13
14
{
// 语义: 查看所有别名
"person": {
"aliases": {}
},
".kibana_task_manager": {
"aliases": {}
},
".kibana_1": {
"aliases": {
".kibana": {}
}
}
}
7.1.2 新增别名 POST请求
  • 请求
1
localhost:9200/_aliases
  • 请求体
1
2
3
4
5
6
7
8
9
10
11
{
// 语义: person 新建别名person_v1.0
"actions": [
{
"add": {
"index": "person",
"alias": "person_v1.0"
}
}
]
}
  • 响应
1
2
3
{
"acknowledged": true
}
7.1.3 删除别名 POST请求
  • 请求
1
localhost:9200/_aliases
  • 请求体
1
2
3
4
5
6
7
8
9
10
11
{
// 语义: 删除person的person_v1.0别名
"actions": [
{
"remove": {
"index": "person",
"alias": "person_v1.0"
}
}
]
}
  • 响应
1
2
3
{
"acknowledged": true
}
7.1.4 重命名别名 POST请求
  • 请求
1
localhost:9200/_aliases
  • 请求体
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
{
// 先删除person_v1.0 别名 在新增 person_v2.0别名,即是重命名
"actions": [
{
"remove": {
"index": "person",
"alias": "person_v1.0"
}
},
{
"add": {
"index": "person",
"alias": "person_v2.0"
}
}
]
}
  • 响应
1
2
3
{
"acknowledged": true
}
7.1.5 通过别名获取索引 GET请求
  • 请求
1
localhost:9200/person_v2.0
  • 响应
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
{
"person": {
"aliases": {
"person_v2.0": {}
},
"mappings": {
"properties": {
"age": {
"type": "integer"
},
"birthDay": {
"type": "date"
},
"birthDayStr": {
"type": "keyword"
},
"code": {
"type": "text"
},
"country": {
"type": "text"
},
"countryEn": {
"type": "text"
},
"displayAffiliation": {
"type": "text"
},
"displayName": {
"type": "text"
},
"displayNameEn": {
"type": "text"
},
"draft": {
"type": "long"
},
"heightValue": {
"type": "float"
},
"jerseyNo": {
"type": "text"
},
"playYear": {
"type": "long"
},
"playerId": {
"type": "keyword"
},
"position": {
"type": "text"
},
"schoolType": {
"type": "text"
},
"teamCity": {
"type": "text"
},
"teamCityEn": {
"type": "text"
},
"teamConference": {
"type": "keyword"
},
"teamConferenceEn": {
"type": "keyword"
},
"teamName": {
"type": "keyword"
},
"teamNameEn": {
"type": "keyword"
},
"weight": {
"type": "text"
}
}
},
"settings": {
"index": {
"creation_date": "1573300240575",
"number_of_shards": "1",
"number_of_replicas": "1",
"uuid": "X7FLu-8sRcijAYKUkgBZQQ",
"version": {
"created": "7020199"
},
"provided_name": "person"
}
}
}
}
7.1.6 通过别名写索引 POST请求
  • 当别名指定了一个索引,则可以做写的操作
  • 请求
1
localhost:9200/person_v2.0/_doc/566
  • 请求体
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
{
// 语义: 通过别名person_v2.0 修改id为566的球员
"countryEn": "Croatia",
"teamName": "快船",
"birthDay": 858661200000,
"country": "克罗地亚",
"teamCityEn": "LA",
"code": "ivica_zubac",
"displayAffiliation": "Croatia",
"displayName": "伊维察 祖巴茨哥哥", //"伊维察 祖巴茨"修改为"伊维察 祖巴茨哥哥"
"schoolType": "",
"teamConference": "西部",
"teamConferenceEn": "Western",
"weight": "108.9 公斤",
"teamCity": "洛杉矶",
"playYear": 3,
"jerseyNo": "40",
"teamNameEn": "Clippers",
"draft": 2016,
"displayNameEn": "Ivica Zubac",
"heightValue": 2.16,
"birthDayStr": "1997-03-18",
"position": "中锋",
"age": 22,
"playerId": "1627826"

}
  • 响应
1
2
3
4
5
6
7
8
9
10
11
12
13
14
{
"_index": "person",
"_type": "_doc",
"_id": "566",
"_version": 2,
"result": "updated",
"_shards": {
"total": 2,
"successful": 1,
"failed": 0
},
"_seq_no": 566,
"_primary_term": 1
}

7.2 如何重建索引

  • Elasticsearch是⼀一个实时的分布式搜索引擎,为用户提供搜索服务,当我们决定存储某种数据时,在创建索引的时候需要将数据结构完整确定下来,于此同时索引的设定和很多固定配置将用不能改变。当需要改变数据结构时,就需要重新建立索引,为此,Elastic团队提供了很多辅助工具帮助开发人员进行重建索引
  • 步骤
  1. person取一个别名person_latest, person_latest作为对外使用
  • POST 请求
1
localhost:9200/_aliases
  • 请求体
1
2
3
4
5
6
7
8
9
10
{
"actions": [
{
"add": {
"index": "person",
"alias": "person_latest"
}
}
]
}
  • 响应
1
2
3
{
"acknowledged" : true
}
  1. 新增一个索引person_20220101,结构复制于person索引,根据业务要求修改字段
  • PUT 请求
1
localhost:9200/person_20220101
  • 请求体
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
{
"mappings": {
"properties": {
"age": {
"type": "integer"
},
"birthDay": {
"type": "date"
},
"birthDayStr": {
"type": "keyword"
},
"code": {
"type": "text"
},
"country": {
"type": "keyword"
},
"countryEn": {
"type": "keyword"
},
"displayAffiliation": {
"type": "text"
},
"displayName": {
"type": "text"
},
"displayNameEn": {
"type": "text"
},
"draft": {
"type": "long"
},
"heightValue": {
"type": "float"
},
"jerseyNo": {
"type": "keyword"
},
"playYear": {
"type": "long"
},
"playerId": {
"type": "keyword"
},
"position": {
"type": "text"
},
"schoolType": {
"type": "text"
},
"teamCity": {
"type": "text"
},
"teamCityEn": {
"type": "text"
},
"teamConference": {
"type": "keyword"
},
"teamConferenceEn": {
"type": "keyword"
},
"teamName": {
"type": "keyword"
},
"teamNameEn": {
"type": "keyword"
},
"weight": {
"type": "text"
}
}
}
}
  • 响应
1
2
3
4
5
{
"acknowledged": true,
"shards_acknowledged": true,
"index": "person_20220101"
}
  1. 将person数据同步到person_20220101
  • POST 请求
1
2
localhost:9200/_reindex //同步请求 等待响应
localhost:9200/_reindex?wait_for_completion=false // 异步请求 直接返回
  • 请求体
1
2
3
4
5
6
7
8
{
"source": {
"index": "person"
},
"dest": {
"index": "person_20220101"
}
}
  • 响应
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
{
"took" : 102,
"timed_out" : false,
"total" : 566,
"updated" : 0,
"created" : 566,
"deleted" : 0,
"batches" : 1,
"version_conflicts" : 0,
"noops" : 0,
"retries" : {
"bulk" : 0,
"search" : 0
},
"throttled_millis" : 0,
"requests_per_second" : -1.0,
"throttled_until_millis" : 0,
"failures" : [ ]
}
  1. 给person_20220101添加别名person_latest,删除person别名person_latest
  • POST请求
1
localhost:9200/_aliases
  • 请求体
1
2
3
4
5
6
7
8
9
10
{
"actions": [
{
"add": {
"index": "person_20220101",
"alias": "person_latest"
}
}
]
}
  • 响应
1
2
3
{
"acknowledged" : true
}
  1. 删除person索引
  • DELETE请求
1
localhost:9200/person
  • 响应
1
2
3
{
"acknowledged" : true
}

7.3 refresh操作

  • 理想的搜索
  1. 新的数据一添加到索引中立马就能搜索到,但是真实情况不是这样的
  2. 我们使⽤用链式命令请求,先添加⼀一个⽂文档,再⽴立刻搜索
1
2
3
4
5
curl -X PUT localhost:9200/star/_doc/888 -H 'Content-Type:

application/json' -d '{ "displayName": "蔡徐坤" }'

curl -X GET localhost:9200/star/_doc/_search?pretty
  1. 强制刷新
1
2
3
4
5
curl -X PUT localhost:9200/star/_doc/666?refresh -H 'Content-Type:

application/json' -d '{ "displayName": "杨超越" }'

curl -X GET localhost:9200/star/_doc/_search?pretty
  1. 修改默认更更新时间(默认时间是1s)
  • PUT 请求
1
localhost:9200/star/_settings
  • 请求体
1
2
3
4
5
{
"index":{
"refresh_interval": "5s"
}
}
  • 响应
1
2
3
{
"acknowledged" : true
}
  1. 将refresh关闭
  • PUT 请求
1
localhost:9200/star/_settings
  • 请求体
1
2
3
4
5
{
"index":{
"refresh_interval": "-1"
}
}
  • 响应
1
2
3
{
"acknowledged" : true
}

7.4 高亮查询

  • 如果返回的结果集中很多符合条件的结果,那怎么能一眼就能看到我们想要的那个结果呢?比如,我们搜索苍井空 ,在结果集中,将所有苍井空 高亮显示?
  • 请求
1
localhost:9200/person_latest/_search
  • 请求体
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
{
// 语义: 查找person james球员,对james做高亮显示
"query": {
"match": {
"displayNameEn": "james"
}
},
"highlight": { // 高亮关键字
"fields": { // 对displayNameEn做高亮
"displayNameEn": {}
}
},
"size": 2
}

// 也可以自定义标签
{
"query": {
"match": {
"displayNameEn": "james"
}
},
"highlight": {
"fields": {
"displayNameEn": {
// 定义高亮标签为 h1
"pre_tags": ["<h1>"],
"post_tags": ["</h1>"]

}
}
},
"size": 2
}
  • 响应
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
{
"took" : 2,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 5,
"relation" : "eq"
},
"max_score" : 4.699642,
"hits" : [
{
"_index" : "person_20220101",
"_type" : "_doc",
"_id" : "214",
"_score" : 4.699642,
"_source" : {
"countryEn" : "United States",
"teamName" : "火箭",
"birthDay" : 620107200000,
"country" : "美国",
"teamCityEn" : "Houston",
"code" : "james_harden",
"displayAffiliation" : "Arizona State/United States",
"displayName" : "詹姆斯 哈登",
"schoolType" : "College",
"teamConference" : "西部",
"teamConferenceEn" : "Western",
"weight" : "99.8 公斤",
"teamCity" : "休斯顿",
"playYear" : 10,
"jerseyNo" : "13",
"teamNameEn" : "Rockets",
"draft" : 2009,
"displayNameEn" : "James Harden",
"heightValue" : 1.96,
"birthDayStr" : "1989-08-26",
"position" : "后卫",
"age" : 30,
"playerId" : "201935"
},
"highlight" : {
// "<em> 包裹起来是 高亮的意思
"displayNameEn" : [
"<em>James</em> Harden"
]
}
},
{
"_index" : "person_20220101",
"_type" : "_doc",
"_id" : "266",
"_score" : 4.699642,
"_source" : {
"countryEn" : "United States",
"teamName" : "国王",
"birthDay" : 854082000000,
"country" : "美国",
"teamCityEn" : "Sacramento",
"code" : "justin_james",
"displayAffiliation" : "United States",
"displayName" : "贾斯汀 詹姆斯",
"schoolType" : "College",
"teamConference" : "西部",
"teamConferenceEn" : "Western",
"weight" : "86.2 公斤",
"teamCity" : "萨克拉门托",
"playYear" : 0,
"jerseyNo" : "",
"teamNameEn" : "Kings",
"draft" : 2019,
"displayNameEn" : "Justin James",
"heightValue" : 2.01,
"birthDayStr" : "1997-01-24",
"position" : "后卫-前锋",
"age" : 22,
"playerId" : "1629713"
},
"highlight" : {
// "<em> 包裹起来是 高亮的意思
"displayNameEn" : [
"Justin <em>James</em>"
]
}
}
]
}
}

7.5 查询建议

  • 查询建议是什么
  1. 查询建议,是为了给用户提供更好的搜索体验。包括:词条检查,自动补全
  • Suggester
  1. Term suggester
  2. Phrase suggester
  3. Completion suggester
text 指定搜索文本
field 获取建议词的搜索字段
analyzer 指定分词器
size 每个词返回的最大建议词数
sort 如何对建议词进行排序,可用选项:score:先按评分排序、再按文档频率排、term顺序;frequency:先按文档频率排,再按评分、term顺序排。
suggest_mode 建议模式,控制提供建议词的方式:missing:仅在搜索的词项在索引中不存在时才提供建议词,默认值;popular:仅建议文档频率比搜索词项高的词;always:总是提供匹配的建议词
7.5.1 term suggester
  • term 词条建议器 ,对给输入的文本进行分词,为每个分词提供词项建议
  • 请求
1
localhost:9200/person_latest/_search
  • 请求体
1
2
3
4
5
6
7
8
9
10
11
{
"suggest": {
"my-suggest": {
"text": "jamse", //用户可能输入错误 jsmes写成jamse
"term": {
"suggest_mode": "missing",
"field": "displayNameEn"
}
}
}
}
7.5.2 phrase suggester
  • phrase 短语建议,在term的基础上,会考量多个term之间的关系,比如是否同时出现在索引的原文⾥里,相邻程度,以及词频等
  • 请求
1
localhost:9200/person_latest/_search
  • 请求体
1
2
3
4
5
6
7
8
9
10
{
"suggest": {
"my-suggest": {
"text": "jamse hardne",
"phrase": { // 词组 对单词进行联系
"field": "displayNameEn"
}
}
}
}
7.5.3 completion suggester
  • Completion 完成建议
  • 请求
1
localhost:9200/person_latest/_search
  • 请求体
1
2
3
4
5
6
7
8
9
10
{
"suggest": {
"my-suggest": {
"text": "Miam",
"completion":{
"field": "teamCityEn"
}
}
}
}

八、person中国官网实战

  • 官方网站
    https://china.person.com/playerindex/

8.1 项目搭建

  • springboot 整合 elasticsearch 和 mysql
8.1.1 POM依赖
1
2
3
4
5
6
7
8
9
10
11
12
<!-- elasticsearch-rest-high-level-client -->
<dependency>
<groupId>org.elasticsearch.client</groupId>
<artifactId>elasticsearch-rest-high-level-client</artifactId>
<version>7.2.1</version>
</dependency>
<!-- elasticsearch -->
<dependency>
<groupId>org.elasticsearch</groupId>
<artifactId>elasticsearch</artifactId>
<version>7.2.1</version>
</dependency>
8.1.2 YML依赖
1
2
3
elasticsearch:
host: localhost
port: 9200
8.1.3 ElasticSearch配置文件
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
package com.frame.elasticsearch.config;

import lombok.Data;
import org.apache.http.HttpHost;
import org.elasticsearch.client.RestClient;
import org.elasticsearch.client.RestHighLevelClient;
import org.springframework.boot.SpringBootConfiguration;
import org.springframework.boot.context.properties.ConfigurationProperties;
import org.springframework.context.annotation.Bean;

/**
* ElasticSearch配置文件
* Es7使用RestHighLevelClient操作ES
*/
@SpringBootConfiguration
@ConfigurationProperties(prefix = "elasticsearch")
@Data
public class ElasticSearchConfig {
private String host;
private Integer port;

/**
* 创建RestHighLevelClient 实例
*/
@Bean
public RestHighLevelClient restHighLevelClient() {
HttpHost http = new HttpHost(host, port, "http");
return new RestHighLevelClient(RestClient.builder(http));
}
}
8.1.4 ElasticSearch CRUD入门操作
  • 对象转Map工具类
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
import org.springframework.cglib.beans.BeanMap;

import java.util.HashMap;
import java.util.Map;

public class BeanUtils {
/**
* 对象转为Map
*/
public static <T> Map<String, Object> beanToMap(T bean) {
HashMap<String, Object> map = new HashMap<>();
if (bean != null) {
BeanMap beanMap = BeanMap.create(bean);
for (Object o : beanMap.keySet()) {
if (beanMap.get(o) != null) {
map.put(o.toString(), beanMap.get(o));
}
}
}
return map;
}
}
  • CRUD 实现方法
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import com.alibaba.fastjson.JSON;
import com.baomidou.mybatisplus.extension.service.impl.ServiceImpl;
import com.frame.common.entity.personPlayer;
import com.frame.common.utils.BeanUtils;
import com.frame.elasticsearch.mapper.personPlayerMapper;
import com.frame.elasticsearch.service.personPlayerService;
import org.elasticsearch.action.delete.DeleteRequest;
import org.elasticsearch.action.delete.DeleteResponse;
import org.elasticsearch.action.get.GetRequest;
import org.elasticsearch.action.get.GetResponse;
import org.elasticsearch.action.index.IndexRequest;
import org.elasticsearch.action.index.IndexResponse;
import org.elasticsearch.action.update.UpdateRequest;
import org.elasticsearch.action.update.UpdateResponse;
import org.elasticsearch.client.RequestOptions;
import org.elasticsearch.client.RestHighLevelClient;
import org.elasticsearch.index.reindex.BulkByScrollResponse;
import org.elasticsearch.index.reindex.DeleteByQueryRequest;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;

import java.io.IOException;
import java.util.Map;

/**
* <p>
* 服务实现类
* </p>
*
* @author Crazy.X
* @since 2019-11-10
*/
@Service
public class personPlayerServiceImpl implements personPlayerService {

/* ES索引 */
private final String person_INDEX = "person_latest";

@Autowired
private RestHighLevelClient restHighLevelClient;

/**
* 添加一条文档
*/
@Override
public boolean addPlayer(personPlayer player, String id) throws IOException {
// 获取 IndexRequest
IndexRequest request = new IndexRequest(person_INDEX)
.id(id)
.source(BeanUtils.beanToMap(player));
// 获取 IndexResponse
IndexResponse response = restHighLevelClient.index(request, RequestOptions.DEFAULT);
System.out.println(JSON.toJSONString(response));
return false;
}

/**
* 获取一条文档
*/
@Override
public Map<String, Object> getPlayer(String id) throws IOException {
// 获取 GetRequest
GetRequest getRequest = new GetRequest(person_INDEX, id);
// 获取 GetResponse
GetResponse getResponse = restHighLevelClient.get(getRequest, RequestOptions.DEFAULT);
// 返回结果
return getResponse.getSource();
}

/**
* 更新一条文档
*/
@Override
public boolean updatePlayer(personPlayer personPlayer, String id) throws IOException {
// 获取 UpdateRequest
UpdateRequest updateRequest = new UpdateRequest(person_INDEX, id)
.doc(BeanUtils.beanToMap(personPlayer));
// 获取 UpdateResponse
UpdateResponse update = restHighLevelClient.update(updateRequest, RequestOptions.DEFAULT);
System.out.println(JSON.toJSONString(update));
return true;
}

/**
* 删除一条文档
*/
@Override
public boolean deletePlayer(String id) throws IOException {
// 获取 DeleteRequest
DeleteRequest deleteRequest = new DeleteRequest(person_INDEX, id).id(id);
// 获取 DeleteResponse
DeleteResponse delete = restHighLevelClient.delete(deleteRequest, RequestOptions.DEFAULT);
System.out.println(delete);
return true;
}

/**
* 删除所有文档
* 先查询所所有在进行删除
*/
@Override
public boolean deleteAllPlayer() throws IOException {
// 获取 deleteByQueryRequest
DeleteByQueryRequest deleteByQueryRequest = new DeleteByQueryRequest(person_INDEX);
// 获取 BulkByScrollResponse
BulkByScrollResponse bulkByScrollResponse = restHighLevelClient.deleteByQuery(
deleteByQueryRequest,
RequestOptions.DEFAULT
);
return true;
}
}
  • CRUD 测试类
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import com.frame.common.entity.personPlayer;
import com.frame.elasticsearch.service.personPlayerService;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.test.context.junit4.SpringRunner;

import java.io.IOException;
import java.util.Map;

@RunWith(SpringRunner.class)
@SpringBootTest
public class personPlayerServiceImplTest {

@Autowired
personPlayerService personPlayerService;

@Test
public void addPlayer() throws IOException {
personPlayer personPlayer = new personPlayer()
.setId(999)
.setDisplayName("苍井空");
boolean result = personPlayerService.addPlayer(personPlayer, "999");
}

@Test
public void getPlayer() throws IOException {
Map<String, Object> player = personPlayerService.getPlayer("999");
System.out.println(player);
}


@Test
public void updatePlayer() throws IOException {
personPlayer personPlayer = new personPlayer()
.setId(999)
.setDisplayName("小泽玛利亚");
boolean result = personPlayerService.updatePlayer(personPlayer, "999");
}

@Test
public void deletePlayer() throws IOException {
boolean result = personPlayerService.deletePlayer("999");
}

@Test
public void deleteAllPlayer() throws IOException {
boolean result = personPlayerService.deleteAllPlayer();
}
}

8.2 接口开发

  • Result结果集Vo
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import com.frame.common.enums.ResultEnum;
import lombok.AllArgsConstructor;
import lombok.Data;

/**
* 结果封装Vo
*/
@Data
@AllArgsConstructor
public class Result<T> {

private Integer code;
private String msg;
private T data;

public static <T> Result success() {
return success(null);
}

public static <T> Result success(T data) {
return success(ResultEnum.SUCCESS.getCode(), data);
}

public static <T> Result success(Integer code, T data) {
return success(code, ResultEnum.SUCCESS.getMsg(), data);
}

public static <T> Result success(String msg, T data) {
return success(ResultEnum.SUCCESS.getCode(), msg, data);
}

public static <T> Result success(Integer code, String msg, T data) {
return new Result<T>(code, msg, data);
}

public static <T> Result fail() {
return fail(ResultEnum.FAIL.getCode());
}

public static <T> Result fail(Integer code) {
return fail(code, ResultEnum.FAIL.getMsg());
}

public static <T> Result fail(String msg) {
return fail(ResultEnum.FAIL.getCode(), msg);
}

public static <T> Result fail(Integer code, String msg) {
return success(code, msg, null);
}
}
  • 结果集对应的枚举
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
import lombok.AllArgsConstructor;
import lombok.Getter;

/**
* Result结果集枚举类
*/
@Getter
@AllArgsConstructor
public enum ResultEnum {

SUCCESS(200, "操作成功"),
FAIL(400,"操作失败")
;
private Integer code;
private String msg;
}
  • controller层
1
2
3
4
5
6
7
8
9
10
11
12
13
14
/**
* 从mysql导入数据到es
*/
@GetMapping("/import")
public Result importAllPlayer() {
try {
personPlayerService.importAllPlayer();
return Result.success("数据导入成功");
} catch (IOException e) {
log.error("ElasticSearch导入数据失败");
e.printStackTrace();
return Result.fail("ElasticSearch导入数据失败");
}
}
  • service层
1
2
3
4
5
6
7
8
9
10
11
12
13
14
/**
* 从mysql导入数据到es
*/
@Override
@Transactional
public boolean importAllPlayer() throws IOException {
// 查询所有数据,这里使用MybatisPlus不作解释
List<personPlayer> personPlayers = list();
for (personPlayer e : personPlayers) {
// 此处调用的增加文档方法
addPlayer(e, String.valueOf(e.getId()));
}
return true;
}
8.2.2 通过姓名查找球员
  • controller层
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
/**
* 通过姓名查找球员
*/
@GetMapping("/searchMatch")
public Result searchMatch(@RequestParam("key") String key,
@RequestParam("val") String val,
@RequestParam(value = "page", required = false, defaultValue = "0") Integer page,
@RequestParam(value = "limit", required = false, defaultValue = "10") Integer limit) {
List<personPlayer> personPlayers = null;
try {
personPlayers = personPlayerService.searchTerm(key, val, page, limit);
} catch (IOException e) {
log.error("searchMatch失败,参数[key={}]][val={}]]", key, val);
e.printStackTrace();
}
return Result.success(personPlayers);
}
  • service层
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
/**
* 通过姓名查找球员
*/
@Override
public List<personPlayer> searchMatch(String key, String val, Integer page, Integer limit) throws IOException {
// 获取 SearchRequest
SearchRequest searchRequest = new SearchRequest(person_INDEX);
// 创建 SearchSourceBuilder 用于查询语句
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
searchSourceBuilder
// 查询 通过match查询 key 字段名称 val 字段值
.query(QueryBuilders.termQuery(key, val))
// 起始页
.from(page)
// 显示条数
.size(limit);
// 设置 请求源 理解为设置查询语句
searchRequest.source(searchSourceBuilder);
// 获取 SearchResponse 查询数据
SearchResponse searchResponse = restHighLevelClient.search(searchRequest, RequestOptions.DEFAULT);
// 获取碰撞之后的结果 (固定写法)
SearchHit[] hits = searchResponse.getHits().getHits();
// 进行对象转换并返回
return Stream.of(hits)
.map(e -> JSON.parseObject(e.getSourceAsString(), personPlayer.class))
.collect(Collectors.toList());
}
8.2.3 通过国家或者球队查询球员
  • controller层
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
/**
* 通过国家或者球队查询球员
*/
@GetMapping("/searchTerm")
public Result searchTerm(@RequestParam(value = "country", required = false) String country,
@RequestParam(value = "teamName", required = false) String teamName,
@RequestParam(value = "page", required = false, defaultValue = "0") Integer page,
@RequestParam(value = "limit", required = false, defaultValue = "10") Integer limit) {
List<personPlayer> personPlayers = null;
try {
// 路由选择国家 或者 球队
if (StringUtils.isNotBlank(country)) {
personPlayers = personPlayerService.searchTerm("country", country, page, limit);
} else {
personPlayers = personPlayerService.searchTerm("teamName", teamName, page, limit);
}
} catch (IOException e) {
log.error("searchTerm失败,参数[country={}]][teamName={}]]", country, teamName);
e.printStackTrace();
}
return CollectionUtils.isNotEmpty(personPlayers) ? Result.success(personPlayers) : Result.success();
}
  • service层
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
/**
* 通过国家或者球队查询球员
*/
@Override
public List<personPlayer> searchTerm(String key, String val, Integer page, Integer limit) throws IOException {
// 获取 SearchRequest
SearchRequest searchRequest = new SearchRequest(person_INDEX);
// 创建 SearchSourceBuilder 用于查询语句
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
searchSourceBuilder
// 查询 通过match查询 key 字段名称 val 字段值
.query(QueryBuilders.termQuery(key, val))
// 起始页
.from(page)
// 显示条数
.size(limit);
// 设置 请求源 理解为设置查询语句
searchRequest.source(searchSourceBuilder);
// 获取 SearchResponse 查询数据
SearchResponse searchResponse = restHighLevelClient.search(searchRequest, RequestOptions.DEFAULT);
// 获取碰撞之后的结果 (固定写法)
SearchHit[] hits = searchResponse.getHits().getHits();
// 进行对象转换并返回
return Stream.of(hits)
.map(e -> JSON.parseObject(e.getSourceAsString(), personPlayer.class))
.collect(Collectors.toList());
}
8.2.4 通过姓名字母查找球员
  • controller层
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
/**
* 通过姓名字母查找球员
*/
@GetMapping("/searchPrefix")
public Result searchPrefix(@RequestParam(value = "prefix", required = false, defaultValue = "A") String prefix,
@RequestParam(value = "page", required = false, defaultValue = "0") Integer page,

@RequestParam(value = "limit", required = false, defaultValue = "10") Integer limit) {
List<personPlayer> personPlayers = null;
try {
personPlayers = personPlayerService.searchPrefix(prefix, page, limit);
} catch (IOException e) {
log.error("searchPrefix失败,参数[prefix={}]]", prefix);
e.printStackTrace();
}
return CollectionUtils.isNotEmpty(personPlayers) ? Result.success(personPlayers) : Result.success();
}
  • service层
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
/**
* 通过姓名字母查找球员
*/
@Override
public List<personPlayer> searchPrefix(String prefix, Integer page, Integer limit) throws IOException {
// 获取 SearchRequest
SearchRequest searchRequest = new SearchRequest(person_INDEX);
// 创建 SearchSourceBuilder 用于查询语句
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
searchSourceBuilder
// 查询 通过prefix查询 displayNameEn.keyword 名字字段 prefix 前缀字母
.query(QueryBuilders.prefixQuery("displayNameEn.keyword", prefix))
// 起始页
.from(page)
// 显示条数
.size(limit);
// 设置 请求源 理解为设置查询语句
searchRequest.source(searchSourceBuilder);
// 获取 SearchResponse 查询数据
SearchResponse searchResponse = restHighLevelClient.search(searchRequest, RequestOptions.DEFAULT);
// 获取碰撞之后的结果 (固定写法)
SearchHit[] hits = searchResponse.getHits().getHits();
// 进行对象转换并返回
return Stream.of(hits)
.map(e -> JSON.parseObject(e.getSourceAsString(), personPlayer.class))
.collect(Collectors.toList());
}

中间件篇-ElasticSearch7.x教程
https://mikeygithub.github.io/2021/03/30/yuque/中间件篇-ElasticSearch7.x教程/
作者
Mikey
发布于
2021年3月30日
许可协议