算法篇-Dijkstra算法

image.png

迪克斯特拉算法

迪杰斯特拉算法(Dijkstra)是由荷兰计算机科学家狄克斯特拉于1959 年提出的,因此又叫狄克斯特拉算法。是从一个顶点到其余各顶点的最短路径算法,解决的是有权图中最短路径问题。

迪杰斯特拉算法主要特点是

从起始点开始,采用贪心算法的策略,每次遍历到始点距离最近且未访问过的顶点的邻接节点,更新始点到其距离,直到扩展到终点为止

算法思想

按路径长度递增次序产生算法:

把顶点集合V分成两组:

  • S:已求出的顶点的集合(初始时只含有源点V0)
  • V-S=T:尚未确定的顶点集合

将T中顶点按递增的次序加入到S中,保证:

  • 从源点V0到S中其他各顶点的长度都不大于从V0到T中任何顶点的最短路径长度
  • 每个顶点对应一个距离值

S中顶点:从V0到此顶点的长度
T中顶点:从V0到此顶点的只包括S中顶点作中间顶点的最短路径长度

依据:可以证明V0到T中顶点Vk的,或是从V0到Vk的直接路径的权值;或是从V0经S中顶点到Vk的路径权值之和。(反证法可证)

求最短路径步骤

G={V,E}

  1. 初始时令 S={V0},T=V-S={其余顶点},T中顶点对应的距离值,若存在<V0,Vi>,d(V0,Vi)为<V0,Vi>弧上的权值,若不存在<V0,Vi>,d(V0,Vi)为∞
  2. 从T中选取一个与S中顶点有关联边且权值最小的顶点W,加入到S中
  3. 对其余T中顶点的距离值进行修改:若加进W作中间顶点,从V0到Vi的距离值缩短,则修改此距离值,重复上述步骤2、3,直到S  中包含所有顶点,即W=Vi为止

代码实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import java.io.*;
import java.lang.*;
import java.util.*;

class ShortestPath {
// A utility function to find the vertex with minimum
// distance value, from the set of vertices not yet
// included in shortest path tree
static final int V = 9;
int minDistance(int dist[], Boolean sptSet[])
{
// Initialize min value
int min = Integer.MAX_VALUE, min_index = -1;

for (int v = 0; v < V; v++)
if (sptSet[v] == false && dist[v] <= min) {
min = dist[v];
min_index = v;
}

return min_index;
}

// A utility function to print the constructed distance
// array
void printSolution(int dist[])
{
System.out.println(
"Vertex \t\t Distance from Source");
for (int i = 0; i < V; i++)
System.out.println(i + " \t\t " + dist[i]);
}

// Function that implements Dijkstra's single source
// shortest path algorithm for a graph represented using
// adjacency matrix representation
void dijkstra(int graph[][], int src)
{
int dist[] = new int[V]; // The output array.
// dist[i] will hold
// the shortest distance from src to i

// sptSet[i] will true if vertex i is included in
// shortest path tree or shortest distance from src
// to i is finalized
Boolean sptSet[] = new Boolean[V];

// Initialize all distances as INFINITE and stpSet[]
// as false
for (int i = 0; i < V; i++) {
dist[i] = Integer.MAX_VALUE;
sptSet[i] = false;
}

// Distance of source vertex from itself is always 0
dist[src] = 0;

// Find shortest path for all vertices
for (int count = 0; count < V - 1; count++) {
// Pick the minimum distance vertex from the set
// of vertices not yet processed. u is always
// equal to src in first iteration.
int u = minDistance(dist, sptSet);

// Mark the picked vertex as processed
sptSet[u] = true;

// Update dist value of the adjacent vertices of
// the picked vertex.
for (int v = 0; v < V; v++)

// Update dist[v] only if is not in sptSet,
// there is an edge from u to v, and total
// weight of path from src to v through u is
// smaller than current value of dist[v]
if (!sptSet[v] && graph[u][v] != 0
&& dist[u] != Integer.MAX_VALUE
&& dist[u] + graph[u][v] < dist[v])
dist[v] = dist[u] + graph[u][v];
}

// print the constructed distance array
printSolution(dist);
}

// Driver's code
public static void main(String[] args)
{
int graph[][]
= new int[][] { { 0, 4, 0, 0, 0, 0, 0, 8, 0 },
{ 4, 0, 8, 0, 0, 0, 0, 11, 0 },
{ 0, 8, 0, 7, 0, 4, 0, 0, 2 },
{ 0, 0, 7, 0, 9, 14, 0, 0, 0 },
{ 0, 0, 0, 9, 0, 10, 0, 0, 0 },
{ 0, 0, 4, 14, 10, 0, 2, 0, 0 },
{ 0, 0, 0, 0, 0, 2, 0, 1, 6 },
{ 8, 11, 0, 0, 0, 0, 1, 0, 7 },
{ 0, 0, 2, 0, 0, 0, 6, 7, 0 } };
ShortestPath t = new ShortestPath();
t.dijkstra(graph, 0);
}
}

参考资料


算法篇-Dijkstra算法
https://mikeygithub.github.io/2020/12/02/yuque/算法篇-Dijkstra算法/
作者
Mikey
发布于
2020年12月2日
许可协议