算法笔记-查并集类

具体详解

https://mikeygithub.github.io/2021/01/08/yuque/chgv64/

相关题目

200. 岛屿数量(mid)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
class Solution {

public int numIslands(char[][] grid) {
if (grid == null || grid.length == 0) {
return 0;
}

int nr = grid.length;
int nc = grid[0].length;
int num_islands = 0;
UnionFind uf = new UnionFind(grid);
for (int r = 0; r < nr; ++r) {
for (int c = 0; c < nc; ++c) {
if (grid[r][c] == '1') {
grid[r][c] = '0';
if (r - 1 >= 0 && grid[r-1][c] == '1') {
uf.union(r * nc + c, (r-1) * nc + c);
}
if (r + 1 < nr && grid[r+1][c] == '1') {
uf.union(r * nc + c, (r+1) * nc + c);
}
if (c - 1 >= 0 && grid[r][c-1] == '1') {
uf.union(r * nc + c, r * nc + c - 1);
}
if (c + 1 < nc && grid[r][c+1] == '1') {
uf.union(r * nc + c, r * nc + c + 1);
}
}
}
}
return uf.getCount();
}
//并查集
class UnionFind {
int count;
int[] parent;
int[] rank;

public UnionFind(char[][] grid) {
count = 0;
int m = grid.length;
int n = grid[0].length;
parent = new int[m * n];
rank = new int[m * n];
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (grid[i][j] == '1') {
parent[i * n + j] = i * n + j;
++count;
}
rank[i * n + j] = 0;
}
}
}

public int find(int i) {
if (parent[i] != i) parent[i] = find(parent[i]);
return parent[i];
}

public void union(int x, int y) {
int rootx = find(x);
int rooty = find(y);
if (rootx != rooty) {
if (rank[rootx] > rank[rooty]) {
parent[rooty] = rootx;
} else if (rank[rootx] < rank[rooty]) {
parent[rootx] = rooty;
} else {
parent[rooty] = rootx;
rank[rootx] += 1;
}
--count;
}
}

public int getCount() {
return count;
}
}
}

6106. 统计无向图中无法互相到达点对数(mid)

1

1697. 检查边长度限制的路径是否存在(hard)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
class Solution {
//并查集
//1.把小于limit的edge加入并查集
//2.排序后,一边判断一边加入并查集

//edgeList[i] = [ui, vi, disi]
//queries[j] = [pj, qj, limitj]
public boolean[] distanceLimitedPathsExist(int n, int[][] edgeList, int[][] queries) {
int m = queries.length;
int k = edgeList.length;
boolean[] ret = new boolean[m];
Arrays.sort(edgeList, Comparator.comparingInt(a -> a[2]));
Integer[] sit = new Integer[m];
for(int i=0;i<m;i++)sit[i] = i;
Arrays.sort(sit, Comparator.comparingInt(a -> queries[a][2]));
parent = new int[n];
for (int i = 0; i < n; i++) {
parent[i] = i;
}
int idx = 0;
for (int i:sit) {
int[] query = queries[i];
while (idx<k&&edgeList[idx][2]<query[2]){
union(edgeList[idx][0],edgeList[idx][1]);
idx++;
}
ret[i] = find(query[0]) == find(query[1]);
}
return ret;
}

int[] parent;

public int find(int i) {
// 如果 i 是自己的父节点(代表)
if (parent[i] == i) {
return i;
} else {
//如果当前parent不是代表继续沿着树向上移动,直到找到代表
return find(parent[i]);
}
}

//将包含i的集合统一起来,还有包括j
void union(int i, int j) {
//查找包含i的集合的代表(或根节点)
int irep = find(i);
//对包含j的集合也要这样做
int jrep = find(j);
//使i的代表的父节点成为j的代表(有效地将所有i的集合移动到j的集合中)
parent[irep] = jrep;
}
}

相关资料


算法笔记-查并集类
https://mikeygithub.github.io/2020/08/10/yuque/算法笔记-查并集类/
作者
Mikey
发布于
2020年8月10日
许可协议