算法笔记-字典树/前缀树

字典树型

  1. 定义字典树结构
1
2
3
4
class Tire {
Tire[] Next = new Tire[2];
int Cnt;
}
  1. 构造字典树
1
2
3
4
5
6
7
8
9
private void add(int num) {
Tire cur = root;
for (int i = 0; i < 32; i++) {
int bit = (num>>i) & 1;
if (cur.Next[bit] == null) cur.Next[bit] = new Tire();
cur.Next[bit].Cnt++;
cur = cur.Next[bit];
}
}
  1. 查询字典树
1
2
3
4
5
6
7
8
private int query(int[] bits, int cnt) {
Tire cur = root;
for (int i = 0; i <= cnt && i < 32; i++) {
if (cur.Next[bits[i]] == null) return 0;
cur = cur.Next[bits[i]];
}
return cur.Cnt;
}

相关题目

1803. 统计异或值在范围内的数对有多少(hard)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
class Solution {
class Tire {
Tire[] Next = new Tire[2];
int Cnt;
}

int ret;
Tire root = new Tire();

public int countPairs(int[] nums, int low, int high) {
int n = nums.length;
int[] lowBit = bit(low);
int[] highBit = bit(high);
for (int i = n - 1; i >= 0; i--) {
int[] bits = bit(nums[i]);
//计算nums[j]前缀
countPairs(lowBit, highBit, bits);
//插入tire树中
add(bits);
}
return ret;
}
//确认限制
// 0 <= i < j < nums.length
// low <= (nums[i] XOR nums[j]) <= high
// nums[i] XOR nums[j]
// XOR 相同为0,不同为1

// 通过与low和high比较来确定nums[j]
// 10101001 low
// 10110101 nums[i]
// 11001010 high

// 存在的情况
// 1.low和high该位都是1,那nums[i] XOR nums[j]必须是1,那nums[j]取决于nums[i]的该位取反
// 2.low和high该位都是0,那nums[i] XOR nums[j]必须是0,那nums[j]取决于nums[i]的该位相同
// 3.low=1和high=0(首位不可能出现这种情况),需要根据前面的来确定

// 4.low=0和high=1,那nums[j]该位可以是1或0
// 4.1 如果该位取0,那后续的位取值必须大于等于lowBit,无需再考虑highBit
// 4.2 如果该位取1,那后续的位取值必须小于等于highBit,无需再考虑lowBit

// 10110101 nums[j]...

// 从后向前遍历数组,查找能和当前nums[i] XOR 满足条件的个数
private void countPairs(int[] lowBit, int[] highBit, int[] bits) {
int[] qbs1 = new int[32];
int[] qbs2 = new int[32];
int i = 0;
for (; i < 32; i++) {
if (lowBit[i] == 1 && highBit[i] == 1) qbs1[i] = qbs2 [i] = bits[i] ^ 1;//情况1
if (lowBit[i] == 0 && highBit[i] == 0) qbs1[i] = qbs2 [i] = bits[i]; //情况2
// 情况4
if (lowBit[i] == 0 && highBit[i] == 1) {
qbs1[i] = bits[i];//bits[i] ^ x = 0
qbs2[i] = bits[i] ^ 1;//bits[i] ^ x = 1
//4.1
int idx = i + 1;
for (; idx < 32; idx++) {
if (lowBit[idx] == 1) qbs1[idx] = bits[idx] ^ 1;
if (lowBit[idx] == 0) {
qbs1[idx] = bits[idx] ^ 1;
ret += query(qbs1, idx);
qbs1[idx] = bits[idx];
}
}
ret += query(qbs1, idx);
//4.2
idx = i + 1;
for (; idx < 32; idx++) {
if (highBit[idx] == 0) qbs2[idx] = bits[idx];
if (highBit[idx] == 1) {
qbs2[idx] = bits[idx];
ret += query(qbs2, idx);
qbs2[idx] = bits[idx] ^ 1;
}
}
ret += query(qbs2, idx);
return;
}
}
ret += query(qbs1, i);
}

private int query(int[] bits, int cnt) {
Tire cur = root;
for (int i = 0; i <= cnt && i < 32; i++) {
if (cur.Next[bits[i]] == null) return 0;
cur = cur.Next[bits[i]];
}
return cur.Cnt;
}

private void add(int[] bits) {
Tire cur = root;
for (int i = 0; i < 32; i++) {
if (cur.Next[bits[i]] == null) cur.Next[bits[i]] = new Tire();
cur.Next[bits[i]].Cnt++;
cur = cur.Next[bits[i]];
}
}

// 获取
private int[] bit(int n) {
int[] ret = new int[32];
int i = 31;
for (; i >= 0; i--) {
ret[i] = n & 1;
n >>= 1;
}
return ret;
}

}

208. 实现 Trie (前缀树)(mid)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
class Trie {

// 构造Trie树节点
class TrieNode {

// 标识该节点是否是字符串的结束节点
boolean isEnd = false;
// 当前节点的孩子节点
TrieNode[] next = new TrieNode[26];

// 设置当前节点为一个字符串的结束节点
public void setIsEnd (boolean isEnd) {
this.isEnd = isEnd;
}

}

// root为根节点
TrieNode root;

/** Initialize your data structure here. */
public Trie() {
root = new TrieNode();
}

/** Inserts a word into the trie. */
public void insert(String word) {

char[] chs = word.toCharArray();
// 表示从根节点开始向下构建
TrieNode node = root;
for (int i = 0; i < chs.length; i++) {

int u = chs[i] - 'a';
// 判断node的子节点集合中是否已经存在了chs[i], 不存在则创建
if (node.next[u] == null)
node.next[u] = new TrieNode();
// 继续向下构建
node = node.next[u];

}

// 当前TrieNode节点是一个字符串的结尾
node.setIsEnd(true);

}

/** Returns if the word is in the trie. */
public boolean search(String word) {

char[] chs = word.toCharArray();
// 表示从根节点开始向下构建
TrieNode node = root;
for (int i = 0; i < chs.length; i++) {

int u = chs[i] - 'a';
// 判断node的子节点集合中是否已经存在了chs[i], 不存在则创建
if (node.next[u] == null)
return false;
// 继续向下构建
node = node.next[u];

}

// 当前TrieNode节点是否一个字符串的结尾
return node.isEnd;

}

/** Returns if there is any word in the trie that starts with the given prefix. */
public boolean startsWith(String prefix) {

char[] chs = prefix.toCharArray();
// 表示从根节点开始向下构建
TrieNode node = root;
for (int i = 0; i < chs.length; i++) {

int u = chs[i] - 'a';
// 判断node的子节点集合中是否已经存在了chs[i], 不存在则创建
if (node.next[u] == null)
return false;
// 继续向下构建
node = node.next[u];

}

// 前缀查找成功
return true;

}
}

相关资料


算法笔记-字典树/前缀树
https://mikeygithub.github.io/2019/12/26/yuque/算法笔记-字典树!前缀树/
作者
Mikey
发布于
2019年12月26日
许可协议